

BIOASSAY REPORT STATIC BASIC ACUTE AQUATIC TOXICITY TEST

March 7 through March 11, 1996

Prepared for: SPECIALTY PRODUCTS, INC.

Prepared by:

COFFEY LABORATORIES, INC. 12423 NE Whitaker Way Portland, OR 97230

March 20, 1996

TABLE OF CONTENTS

Section	Page
Analytical Narrative	2
Test Methods	
Test Organisms	
Dilution Water	
Test Concentrations	
Monitoring of Bioassays	
Data Analysis	
Results	
Reference Toxicant Tests	
Summary Table3	
Appendix A. Test and Reference Toxicant Raw Data Sheets	
Appendix B. Chain-of-Custody	

ANALYTICAL NARRATIVE

Ms. Nancy Baker Specialty Products, Inc. 2410 104th St. Ct. S., Suite D Tacoma, WA 98444

Re: Data Analysis - Toxicity Tests

Dear Ms. Baker,

Coffey Laboratories, Inc. has completed the analysis of data collected from the aquatic bioassay which was performed on the sample that you delivered to us. The test was run according to the Washington Department of Ecology's (DOE) Static Acute Fish Toxicity Test, based on the US Environmental Protection Agency's *Method for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms*; EPA/600/4-85/013.

When tested at 100 and 1000 mg/L, this product did not display any toxic effects on the fish within the 96 hour bioassay. Based on these results, it should be safe to use this product for the treatment of the salmon ponds, tanks, or runs. However, I do recommend allowing the product to "cure" for as long as possible, and then rinsing the vessel(s) with copious amounts of water before introducing the fish.

Reconstituted moderately hard water was used for the controls and for the dilutions, which included three replicates of both 100 and 1000 parts per million. Ten fish were placed in each replicate at test initiation for a total of 30 fish per concentration. Mortality was observed and recorded daily for both the sample and a reference toxicant of sodium chloride which was run concurrently. In addition to mortality, the pH and dissolved oxygen were recorded daily in all replicates. Test temperatures remained steady at $12 \pm 1^{\circ}\text{C}_{\odot}$, (with the exception of the first 24 hours when the air conditioning compressor failed. This situation was remedied, and test temperatures were restored. Although this was a deviation from the test method, the situation was remedied within 24 hours, and the fish did not display any adverse effects due to the increased temperatures.)

According to the EPA, test data is acceptable if control survival is at least 90%. According the DOE (80-12), a sample is considered to be "Dangerous Waste" if more than 11 cumulative deaths occur in the 1000 mg/L concentration. A sample is considered "Extremely Hazardous Waste" if more than 10 cumulative deaths occur in the 100 mg/L within 96 hours. The sample received by Coffey Laboratories on February 29, 1996 caused no deaths in either the 1000 mg/L concentration or the 100 mg/L concentration. Therefore, this sample is not considered to be "Dangerous" or "Extremely Hazardous" waste according to the DOE.

In this report, I have included a summary table and the actual raw data. In addition, I enclosed the reference toxicant data for your information. Please feel free to contact me should you have any questions.

Sincerely,

COFFEY LABORATORIES, INC.

Sybil Merrels

Aquatic Biologist

Approved by,

Susan M. Coffe

President

March 20, 1996

Job #: MX960229AS

DATA SHEET FOR STATIC BASIC ACUTE FISH TOXICITY TEST

Laboratories: COFFEY LABORATORIES, INC.

Custabbr: Specialty Products Job No. MX960229AS Analyst: SM/JE

Time: 14:30 Time: 14:30

Test Organism: Oncorbynchus mykis Beginning Date: March 7, 1996 Ending Date: March 11, 1996

Test Temperature: 12 ± 1°C

Par. Comb. Swedige Committee Design		Number of Constitutes beatles	Number of Constitutes Sentis	Considering Dwellin	na Daved to				Chardeni Orygen		7				2.00					D.J. components	tug.		11	Seed a Carton	11	Treat Assessy small or Calific	1	Conductory (4)
* * * * * * * * *	* * * * * * *	* * * * * * *								:		*		z	\$	- 11	2	*	ž	9.	11					:		:
1 Course 9 0 0 0 104 18 10 11 12 100	9 0 0 104 118 120 113 123	0 0 0 0 00 10 10 00 11 12	0 0 01 104 10 00 01	* 0 194 1/8 10 11 12	0 104 10 00 01 00	10.4 10 00 01 02	10 10 11	24 14 04	**	:	(2.1)			181	11/1	1.44	140	13.6	14.8	613	8 0	*11	1		818		211	1
1 Overal 9 9 9 9 10 11 11 11 11 11			** ** ** ** ** *		: :	11 01 11		** **	:	2	17.0				7.80	2	140	17	11.0	8.11	6.03	6.53	:	-1	4.4	1	ı	3
2 Compt 2 0 0 0 111 0 11 11 11							:	:	÷		:		0.0	1.00	2.39	1.8	110	9 21	***	***	111	10.0	:			1	×	1
1 100 10 10 10 10 10 10 10 10 10	* * * * * * * *	* * * * * * * * * *	** ** * * * * * *	* * * * * * * *	** ** ** **	104 13 48 44	10 48 44	**	;		:	1111	0.0	111	140	100	1150	9.21	18.6	411	111.0	411.0	188		***	1	*	
4 100 t 0 0 0 101 m 111 m 121 12 12	01 11 # 901 0 0 0 4	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 4 11 0	0 101 11	11 - 11	1	11 10	**		6.0	15	0.	181	2.60	1.83	3.65	12.0	24.0	0.00	11.0	1119	:	1.	111	1	200	***
				: :			: -	:	:		:	1		2 80	1.58	121	1.50	13.6	**	***	8.21	***	100	1	44.3		:	1
1 1000 0 0 0 0 100 10 10 10 10 10	50 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81 24 41 68 6 6 6	0 0 00 10 00 0	41 41 41 41 4	0 000 Te 62 75	183 1.6 82 15	10 01 13	41 14	138		2	1			158	1.48	1740	12.6	*	4.8.4	***	***	:		177	1	312	1
1 100 0 0 0 0 111 m 121 m 12 m 121 m 12 m 12				: :	* **		:	:	:		:	12.3	:	1	340	110	7.83	9.55	11.0	12.8	12.0	12.0	=		111		2116	I
	** ** * * * * * *	** ** * * * * *	** ** * ** * *		** ** ** **	*** ** ***	: :	**		-	:	120		7.54	24	1 44	**	444	*	**	103	411	*		***	1	212	1
	** ** ** * * * * * *	** ** ** * * * *	** ** ** * * * *						**		:		***	1.88	1.39	411	94.0	975	400	19.5	103	111		*	114			1
	* * * * * * *	* * * * * * *	** ** ** * *	: : : : :	* * * * *	** ** **	** ** **	:	:		:		:	100	3.60	2.48	153	6.00	**	4	*	***			ē		1	1
		* * * * * * *	* * * * * * *	* * * * * *	* 164 13 33 44	*** ***	13 14 et	:	:		:		20.0	334	3.69	2.62	3.88	0.03	:	*	***	*	1	1	ē		20.00	1
4 105-04 4 1 1 1 1 10 10 10 10 10 10 10 10 10 10 1	* 1 1 1 1 100 13 13 14	1 1 1 1 100 10 10 10	** ** ** ** * *	1 1 168 10 10 10	1 168 13 14 14	165 23 140 440		:	:		:		181	2.52	116	346	134	15.0	*	4.0	***	*	1	3	**		338.6	-
2 24 54 10 10 10 10 10 10 10 10 10 10 10 10 10	8 8	3 3																										

Sample Description: This sample was a polyeuro sealant to be used for trout runs and/or ponds.

Average Weight: 0.29 g. Mean Length; 3.4 cm. Longast; 3.9 cm. Shortast: 2.9 cm. Ratio Bong/Short): 1.3. Number of Organisms per chamber: 10 Comments: This sample is not considered to be dangerous or extremely hazardous waste because no fish died in either the 100 or 1000 mg/L concentrations.

Data Verified by: SM Date: 3/15/96

CHW > 10/30 DW > 11/30

APPENDIX A

TEST AND REFERENCE TOXICANT RAW DATA SHEETS

Doc ID: 0:\Clom\Port.BRN\LifeSci.SEC\Forms\ToxHzWst.FOR Revision #: 1.00 Revision Date: 11/04/92

STATIC ACUTE TOXICITY TEST - HAZARDOUS WASTE

Job Number: Reference Toxicant	Source: NaC/	Analyst: JE ERL SW
Custabbr: QA/QC	Test Fish: Onchoryn Kus mykis	Reviewed By:
Start Date: 3/7/96 Time: 14:30		-

Conc. (mg/1.)	Rep.	Number of organisms/ container		Мо	etallty / 2	4 hrs.		Mod	otal tailty			pH			S _B	ecific ond.		Disc	olved Ox (mg/L)	ygen			Т.	emperatu	re (°C)	
				24	48	72	96		N	-	24	48	72	96		96		24	48	72	96	10	24	48	72	96
0	1	10	0	0	Ô	0	0	0	8,00	19.4	75	7.52	744	7.6	316		10.4	1.1	9.0	9.1	7.7	140	125	120	12.0	11.5
	2	10	0	0	0	0	0	0	814	N.H	7.69		7.60	7.6	Bles		10.4		9.0	9.4	9.8	14.0		120		12
	3	10	10	0	0	0	D	0	8,13	MI.	7.44	100000	7.65	1463	1	S	10.41		90	9-1	9.8	14.0		12.0	148	11.5
15	1	10	10	0	0	0	0	0	8.06	111	7.69				3.10		10.4	7.7	8.6	86	9.2	140		125	Q.5	_
	.2		0	0	0	6	0	0		OA	169		7,39		3.05		10.4		8.9	9.0	9.7	13.0		12.0		17.5
	3	/0	0	Q	Q	0	0	3		104		7.70			3,05		104		9.0	9.5	9.8	140		12.0		-
3.0	1		0	0	0	0	D	0	8.01	14.5				153	501		10.5	7.7	9.1	13	9.7	13,0			145	11-
	2	10	0	Q	0	0	0	Ò		164	7.61		7.49		5915		104		9.0	9.5	9.9	140		11.5		11.5
	3	10	0	0	0	0	0	0		PA		7.62			5.64	5	10.4		9.0	9.0	9.6	14.0		12.4	120	11.
6.0	1	10	0	0	0	6	0	0	800	10.4				154	10.66	200	10.4	77	9.0	9.2	7.2	140			12.5	17.0
	2	10	0	0	0	0	0	Ó		10/5	7,58		7.6		10.83		10.5		90	7.0	7.7	145		-	120	11.6
-,	3	10	0	0	0	O	v	0		10.5		7,63	778		H 85		105		9.2	9.4	7.9	14<		11.5	11.5	11.3
12.0	1	10	0	Q	0	0	0	Ó	7.13	10.5					720		10.5	17	9.2	93	9.6	14.0		12.5		11.5
	2	10	0	0	0	0	0	0		10.41	7.52			1.54			10.4		9,2	90	9.6	140			1.5	12.
	3	10	0	1	0	v	0	100		n d		7.56	7.47				10.5		9.0	90	7.8	14:5		10.	120	tt.
	1	10	0	10	0	-	-	10	7.88	10/5	-	-		-		22/145	10.5	-	-		-	14.6	-		_	_
	2	10	Q	10	0	-		10		105	7.71	- 1	- 1	-			10.5	_	-	-	-	MS	-	-	-	
	. 2 1	10	()	10	0	-	-	10	F	104	-	-	-	-		J	10.4	-	-	_	-	140	-	-	_	_

Comments: Test temps were 12.0°C, at test initiatives (17°C on 3/7),

Physical Characteristics of Fish

Comments/Calculations

Fish#	Weight, g	Length. cm		
	0.437	3.8		
	0.397	3.7		
	0.319	3,6		
	0.267	3.3		
	0.263	3-3 3-3		
	0.383	3.6		
	0.263	3.3 3.4 3.4 3.5		
	0.315	3.5		
	0.327	3.6		
	0,233	3.1		
	0.407	3.8		
	0.393	3.8		
	0.210	3.2		
	0.442	39		
	0.161	29		
	0.183	3.0		
	0.318	3.4		
	0.304	3:4		
	0.359	3.7	-	
	0.189	3.0		
	0,330	3.6		
	0.273	3.3		
	0.300	3,5		
	0.353	3.3		
	0.235	3.3		
	0.193	3.1 3.2		
	0.235	3.2		
	0.172			
	0.357	3.7		
	X = 0.294	3.4		

Dea ID: 0:XCLOM/Part.BRNLINeBal.BECyFormal/WaterQty.WBF Revision #: 1.00 Revision Date: 10/10/85

CHEMICAL ANALYSIS OF WATER

	SP. COND.			4	2	7013	206	78		7/2/5	377.6		28/115	313/16	
	CaCO,	mg/l.			10,000	2	100	Ç,		5	(3)		9	119	
	z	Acid		0.087	5000	0.0	0.0147	7007		100 0011	6087		Cziara	0.0.97	
	mLs	Sample			7.41 0.0 6.35 4.51. 1.35 100		100 0.097	00/	1	100	7.45 25,1 31.4 4.50 6.3 100	751 21 21 20 1 2 100	Cal	7.51 377 43.9 453 6.2 100	
ALKALINITY	Fln.	III.			1,36	120	6.3	77		6.9	6.3	,	4	67	
ALK	Final	ī			451.	7.	6.5 453 6.3	7.63 12.6 18.9 4.52 1.2	11/23	100 18.1 23.1 7.55 6.3	4.50	707	200	453	
	Fitrant Vol.	Fln.			6.35		12.6	18.9	75,	7.00	3.14	211	9.7.	43.9	
	Titran	Init.			0.0		287 63		200	1.01	25.1	77/25	1	37.7	٠
	Inlt.	E D			7.41		7.83	7.62	711	100	7.45	751		7.51	
	CaCO,	mg/L		720	196		100	5/2	3	3	96	6/6		8	
	Z	EDIA		_	-		-		_)	-		-	
HARDNESS	mLs	sampie		32	25		3	35	20	3	3,	>2	,	35	
HA	Fln.	ji		% १८	2.4		25	2.4	200 30	4.7	2.4	7.4	_	25	
	Titrant Vol.	Fln.		0,0 248 248	14 July 27. 2 2.19		372 01.735	132.1	3017	21:60	31.6 37.0 J.H	37 8 367		402	
	Titran	Inlt.		00	314	36	37.2	7.12		72.	3.1.6	37.3		39.7	
	Date/ Initials		Marks	当	3	3/11/20	JE	3/11/94 J.E	3/11/94	2/11/01.	J.F.	3/11/9/10	Admike	- TE	
	Sample Job / or Dilution Water	Batch /	thx9603.3943	Handlard	Specially pos Control - 1	MX960JO94S	1-400001-1	SPECIALLY POS	MXG66239AS SPECIALTIPOS	Mx94c33945	1000 ppn-1	AIXALBESTAS SPECIALIY POS	130	1000 ppm 3	